Introduction to 1. 1SPSS
Installation, startup and exit of 1.2 PSS
Install1.2.1SPSS15.0.
1. 2. 2 seconds.
1.2.3 Exit from SPSS 15.0.
Interface and settings of 1.3 PSS 15.0
1.3. 1
1.3.2 General functional parameters
1. 3. 3 Viewer View Window Parameters
1.3.4DraftViewer parameter
1. 3. 5 output label output label parameters
1. 3. 6 Chart graphic parameters
1. 3. 7 interactive interactive graphic window parameters
1. 3. 8 Pivot Table Pivot Table Parameters
1. 3. 9 data data parameters
1. 3. 10 format parameters of currency numerical variables
1.3. 1 script script editing window
Chapter II Establishment and Operation of Data Files
2. 1 data editor and data file
2. 1. 1 data editor
2. 1.2 data file
2.2 Constants, Variables, Operators and Expressions
2.2. 1 constants and variables
Operators and expressions
2.2.3 How to define variables
probability event
2.3 input data
2.3. 1 data input method
2.3.2 View file information and variable information.
2.4 Edit data file
2.4. 1 Edit the data in the cell
Insert variables and delete variables
2.4.3 Insert observation and delete observation.
2.4.4 Data cutting, copying and pasting
Undo operation
2.5 Operation on data files
2.5. 1 Opening and saving of data files
Conversion of database files
Chapter III Operation of Data Files
3. 1 General operation of data file
3. 1. 1 data sorting
3. 1.2 Grouping of data files
3. 1.3 data file merging
3. 1.4 Transposition of data files
3. 1.5 Rank of variable value
3. 1.6 Re-coding of variable values
3. 1.7 Calculating new variables
3.2 Classification and summary
3.2. 1 data description
3.2.2 Classification and Summary Parameter Settings
3.2.3 classified summary results
3.3 observation weighting
3.4 data file reorganization
3.4. 1 Select the data reorganization method.
3.4.2 Reorganization from Variable Group to Observation Group
3.4.3 Reorganization from Observation Group to Variable Group
3.4.4 Transposition and reorganization
Chapter 4 Basic Statistical Analysis Functions
4. 1OLAP online analysis process
4. 1. 1 data description
4.1.2 Overlapping operation and setting of OLAP process
4.2 Observation and analysis of summary report
4.2. 1 observation summary analysis parameter setting
Output result
4.3 Row and column analysis of summary report
4.3. 1 line summary report
4.3.2 Summary report in the form of histogram
4.4 Frequency analysis
4.4. 1 data description
4.4.2 Frequency analysis of classified variables
4.4.3 Frequency analysis of continuous variables
4.5 Descriptive statistical analysis
4.5. 1 data description
Descriptive analysis
4.6 Exploration and analysis process
4.6. 1 data description
Explore case analysis
4.7 contingency table analysis process
6.5438+0 data description
4.7.2 Parameter setting of contingency table analysis
4.7.3 Output result of contingency table analysis
Chapter 5 Mean Comparison and T Test
5. 1 means process
5. The principle and method of1.1
5. 1.2 psss case study
5.2 single sample t test
5.2. 1 Principles and methods
5. 2. 2 psss case analysis
5.3 T-test of two independent samples
5.3. 1 Principles and methods
5. 3. 2 psss case analysis
5.4 paired sample t test
5.4. 1 Principles and methods
5. 4. 2 psss case analysis
Chapter 6 nonparametric test
6. 1 introduction to nonparametric test
6. 1. 1 nonparametric test and parametric test
6. 1.2 Advantages of nonparametric test
6. 1.3 Disadvantages of nonparametric test
6.2 chi-square test
6.2. 1 Principles and methods
Data and problem description
6.2.3 Chi-square test case analysis
6.3 Binomial Test
6.3. 1 Principles and methods
Data and problem description
6.3.3 Example Analysis of Binomial Test
6.4 run-length test
6.4. 1 Principles and methods
Data and problem description
6.4.3 Example Analysis of Run-length Test
6.5 Kolmogorov-smirnoff Single Sample Test
6.5. 1 Principles and methods
Data and problem description
6.5.3K-S single sample test case analysis
6.6 Two independent sample tests
6.6. 1 Principles and methods
Data and problem description
6.6.3 Analysis of Two Independent Samples
Inspection of 6.7k independent samples
6.7. 1 Principles and methods
Data and problem description
6. 7. 3 Analysis of Independent Sample Test Cases
6.8 Inspection of Two Related Samples
6.8. 1 Principles and methods
Data and problem description
6.8.3 Example Analysis of Two Related Sample Tests
Testing of 6.9k related samples
6.9. 1 Principles and methods
Data and problem description
6.9.3k Related Sample Test Case Analysis
Chapter 7 Multiple Response Analysis
7. 1 Overview of multiple responses
7.2 Definition of Multiple Response Variable Set
7.2. 1 defines an example of multiple response variable set.
7.3 Frequency analysis of multi-response variable sets
7.3. 1 frequency analysis example of multiple response variables
7.4 Cross-table analysis of multiple response variable sets
An example of crosstab analysis of multiple response variables
7.5 Using tabular process to study multiple response variable sets
7.5. Definition of1Multiple Response Variable Set
7.5.2 Create a table with multiple response variable sets by using the table process.
Chapter VIII Regression Analysis
8. 1 linear regression
8. 1. 1 Basic principle of linear regression with one variable
8. 1.2 Basic principles of multiple linear regression
8. Other tests of the hypothesis of1.3 model
8. 1.4 problem description and data preparation
8. 1.5 Setup and operation of linear regression analysis
8. 1.6 case result analysis
8.2 Curve regression
8.2. 1 Basic principle of curve regression
8.2.2 Problem Description and Data Preparation
8.2.3 Setting and Operation of Curve Regression Analysis
8.2.4 Case result analysis
8.3 nonlinear regression
8.3. 1 Introduction to Nonlinear Regression
8.3.2 Problem Description and Data Preparation
8.3.3 nonlinear regression parameter setting
8.3.4 Case result analysis
8.4 Binary logistic regression
8.4. Mathematical principle of1binary logic regression
8.4.2 Problem Description and Data Preparation
8.4.3 Parameter setting of binary logistic regression
8.4.4 Case result analysis
8.5 Multiple logistic regression analysis
8.5. 1 Brief introduction to the principle of multiple logistic regression
8.5.2 Problem Description and Data Preparation
8.5.3 Parameter setting of multiple logistic regression
8.5.4 Case result analysis
8.6 ordinal regression
8.6. 1 problem description and data preparation
8.6.2 Parameter Setting of Ordered Regression
8.6.3 Analysis of Case Results
8.7 Probability unit regression analysis
8.7. 1 Brief Introduction of Probabilistic Unit Regression Analysis
8.7.2 Problem Description and Data Preparation
8.7.3 Parameter Setting of Probability Unit Regression
8.7.4 Case result analysis
8.8 Weighted regression analysis
8.8. 1 introduction to weighted regression analysis
8.8.2 Problem Description and Data Preparation
8.8.3 Parameter setting of weighted regression
8.8.4 Analysis of Case Results
8.9 Two-stage Least Squares Regression
8.9. 1 Basic principle of two-stage least squares regression
8.9.2 Problem Description and Data Preparation
8.9.3 Parameter setting of two-stage least squares regression
8.9.4 Case result analysis
8. 10 optimal proportional regression
8. 10. 1 optimal scale regression principle
8. 10.2 problem description and data preparation
8. 10.3 parameter setting of optimal scale regression
8. 10.4 case analysis
Chapter 9 Analysis of Variance
9. Introduction to1ANOVA
9. Comparison between1.1t test and analysis of variance
9. 1.2 Basic principle of variance analysis
9.2 One-way ANOVA
9.2. 1 Principles and methods
9.2.2 One-way ANOVA Example
9.3 Multi-factor difference analysis process
9.3. 1 Principles and methods
9.3.2 Two-factor analysis of variance example
9.3.3 Example of Covariance Analysis
9.3.4 Analysis of Random Factors in Interaction Effect
9.4 multivariate analysis of variance
9.4. 1 Principles and methods
9.4.2 Examples of multivariate analysis of variance
9.5 Variance analysis of repeated measurement design
9.5. 1 Principles and methods
9. 5. 2 psss case analysis
9.6 Difference component analysis
9.6. 1 Principle introduction
9. 6. 2 psss case analysis
9.7 Orthogonal experimental design
9.7. 1 orthogonal experimental design
9. 7. 2 psss case analysis
9.7.3 Analysis of variance of orthogonal experimental design
Chapter 10 Association Analysis
10. 1 Basic concepts of correlation analysis
Characteristics and application of 10. 1. 1 correlation analysis
Calculation of correlation coefficient 10. 1.2
Related analysis functions provided by SPSS+00. 1.3
10.2 binary correlation analysis
10.2. 1 problem description and data preparation
10.2.2 related analysis parameter settings
10.2.3 case result analysis
10.3 partial correlation analysis
Basic principle of partial correlation analysis 10.3. 1
10.3.2 partial correlation analysis example
10.4 distance analysis
10.4. 1 Basic concepts of distance analysis
10.4.2 distance analysis parameter setting
10.4.3 distance analysis example
Chapter 1 1 Factor Analysis
1 1. 1 Brief introduction to the principle of factor analysis.
1 1. 1 the basic idea of factor analysis
1 1. 1.2 the relationship between factor analysis and principal component analysis
1 1. 1.3 Basic steps of factor analysis
1 1.2SPSS factor analysis application example
1 1.2. 1 data description
1 1. 2. 2 SPSS factor analysis process settings
1 1.2.3 result analysis
Chapter 12 classification analysis
12. 1 Brief introduction of cluster analysis principle
12. 1. 1 Basic concepts of cluster analysis
General principles of 12. 1.2 cluster analysis
12.2 fast sample clustering process
12.2. 1 Introduction to Fast Clustering
12.2.2 problem description and data preparation
12.2.3SPSS Fast Clustering Settings
12.2.4 case result analysis
12.3 hierarchical clustering
12.3. 1 Introduction to hierarchical clustering
12.3.2 problem description and data preparation
12.3.3SPSS settings for hierarchical clustering of SPSS.
12.3.4 case result analysis
Further analysis of 12.3.5 clustering results
12.4 two-stage cluster analysis
12.4. 1 introduction to two-stage clustering
12.4.2 problem description and data preparation
12.4.3SPSS two-stage clustering setting
12.4.4 case result analysis
12.5 general discriminant analysis
12.5. 1 Basic principle of discriminant analysis
12.5.2 problem description and data preparation
12.5.3 parameter setting of discriminant analysis
12.5.4 case result analysis
12.6 example of stepwise discriminant analysis
12.6. 1 problem description and data preparation
12.6.2 parameter setting for step-by-step discrimination
12.6.3 case result analysis
12.7 decision tree analysis
12.7. 1 Basic principles of decision tree classification
12.7.2 decision tree process parameter setting
12.7.3 problem description and data preparation
12.7.4 case analysis
Chapter 13 survival analysis
13. 1 Introduction to Survival Analysis
13. 1. 1 Basic concepts of survival analysis
13. 1.2 data characteristics of survival analysis
13. 1.3 Common methods of survival analysis
13.1.4 survival analysis process in SPSS.
13.2 life table analysis
Life table analysis 13.2. 1
13.2.2 Basic steps of life table analysis
13.2.3 life table case analysis
Kaplan-Meyer analysis of 13.3
13. 3. 1 Kaplan-Meyer analysis steps
Comparison and test of 13.3.2 survival curve
Kaplan-Meyer analysis example
13.4Cox regression model
Brief introduction to the principle of 13.4. 1Cox regression model
13.4.2Cox regression case analysis
Chapter 14 Reliability Analysis
Reliability analysis of 14. 1
14. 1. 1 Basic principles of reliability analysis
14. 1.2 problem description and data preparation
14. 1.3 parameter setting for reliability analysis
The result analysis of 14. 1.4 case
14.2 multidimensional scaling analysis
14.2. 1 introduction to multidimensional scaling analysis
14.2.2 problem description and data preparation
14.2.3ALSCAL parameter setting of ALSCAL process
14.2.4 case result analysis
Chapter 15 time series analysis
15.1SPSS15 time series analysis
15. 1. 1 General setting options for creating models
15. 1.2 General setting options for application models.
15.2 Pre-analysis of Time Series Data
15.2. 1 missing value replacement
15.2.2 define time variables.
15.2.3 stability of time series
15.3 exponential smoothing model
The basic principle of exponential smoothing of 15.3. 1
15.3.2 parameter setting of exponential smoothing model
15.3.3 example analysis of exponential smoothing model
15.4ARIMA model
The basic principle of 15.4. 1ARIMA model
15.4.2ARIMA parameter setting of ARIMA model
ARIMA 15. 4. 3 ARIMA Case Analysis
15.5 seasonal decomposition model
15.5. 1 Overview of seasonal decomposition method
15.5.2 Case Analysis of Seasonal Decomposition Model
Chapter 16 Logarithmic Linear Model
16. 1 Overview of Logarithmic Linear Model
Shortcomings of simple contingency table analysis of 16. 1. 1
The basic form of loglinear model 16. 1.2
16.2 general process
16. 2. 1 general process overview
16.2.2 problem description and data preparation
16. 2. 3 general process parameter setting
16.2.4 case result analysis
16.3 logic process
16. 3. 1 Overview of login process
16.3.2 problem description and data preparation
16.3.3Logit parameter setting of Logit process
16.3.4 case result analysis
16.4 model selection process
16.4. 1 model selection process overview
16.4.2 problem description and data preparation
16.4.3 operation process of hierarchical log-linear model
16.4.4 case result analysis
Chapter 17 correspondence analysis
17. 1 Basic principle of correspondence analysis
Correspondence analysis and factor analysis of 17. 1. 1
Correspondence analysis in 17. 1.2SPSS
17. 1.3 precautions in using correspondence analysis
17.2 simple correspondence analysis
17.2. 1 Mathematical principle of simple correspondence analysis
17.2.2SPSS Simple Correspondence Analysis Example
17.3 multivariate correspondence analysis
17.3. 1 Basic concepts and characteristics of multivariate correspondence analysis
17.3.2 parameter setting of multivariate correspondence analysis
17.3.3 example result analysis
Chapter 18 Missing Value Analysis
Analysis of concept missing value of 18. 1
18. 1. 1 expression with missing value
18.10.2 Processing Method of Missing Values in SPSS
18.2 parameter setting for missing value analysis
18.3 Example of missing value analysis
Chapter 19 Statistical Graphics
19. 1 overview
19. 1. 1 data and variable preparation
19. 1.2 Basic operation of the graphic generator
19. 1.3 interactive drawing and dialog drawing
19. 1.4 graphic editing
19.2 bar chart
19.2. 1 data and problem description
Use the graph generator to make a bar graph.
19.2.3 interactive bar chart
19.2.4 Create a bar chart with a dialog box.
19.3 line chart
19.3. 1 data and problem description
Make a line chart with a graph generator.
19.3.3 interactive diagram
19.3.4 Create a line chart with a dialog box.
Area diagram of 19.4
19.4. 1 data and problem description
19.4.2 Use the graphic generator to draw the regional map.
19.4.3 interactive area map
19.4.4 Create an area map with a dialog box.
19.5 pie chart
19.5. 1 data and problem description
19.5.2 Making Pie Chart with Graphic Generator
19.5.3 Interactive Pie Chart
19.5.4 Create a pie chart using a dialog box.
19.6 high and low point map
19.6. 1 data and problem description
19.6.2 Use the graphic generator to make the height map.
19.6.3 interactive height map
19.6.4 Create high-low point map with dialog box.
19.7 Pareto diagram
19.7. 1 data and problem description
19.7.2 Create Pareto Diagram with Dialog Box
19.8 control chart
19.8. 1 data and problem description
19.8.2 Create control chart with dialog box.
19.9 box diagram
19.9. 1 data and problem description
Make a block diagram with a graphic generator.
19.9.3 interactive block diagram
19.9.4 Create a block diagram with a dialog box.
19. 10 error bar chart
19. 10. 1 data and problem description
19. 10.2 interactive error bar chart
19. 10.3 Create an error bar chart with a dialog box.
19. 1 1 scatter plot
19.11.1data and problem description
19. 1 1.2 Use the graphic generator to draw the height map.
19. 1 1.3 interactive scatter plot
19. 1 1.4 Create a scatter plot with a dialog box.
19. 12 histogram
19. 12. 1 data and problem description
19. 12.2 histogram with graph generator
19. 13P-P probability diagram
19. 13. 1 data and problem description
19. 13.2 Create PAPP-P Probability Diagram with Dialog Box.
19. 14Q-Q probability diagram
19. 14. 1 data and problem description
19. 14.2 Create Q-Q probability diagram with dialog box.
19. 15 timing diagram
19. 15. 1 general sequence diagram
19. 15.2 autocorrelation sequence diagram
19. 15.3 cross-correlation sequence diagram
19. 16 biaxial graph
19. 16. 1 data and problem description
19. 16.2 Use the graphic generator for biaxial drawing.
Chapter 20 Financial Crisis Early Warning Analysis of Listed Companies
20. 1 financial crisis early warning application introduction
20. 1. 1 quantitative definition method of financial crisis
20. 1.2 model selection of financial crisis early warning
20.2 data description
20.2. 1 data description
Index selection
additional remarks
20.3 Overview of analytical methods
20.3. 1 discriminant analysis
Logical regression method
20.4SPSS modeling process and conclusion analysis
SPSS data filtering operation
20. 4. 2 psss discriminant analysis modeling and analysis
20. 4. 3 Logistic regression modeling and analysis
20.5 Further analysis and application
20.5. 1 Application analysis of classification results
20.5.2 Improvement of modeling method
20.6 Suggestions and promotion
20.6. 1 time series research
20.6.2 Data of effective early warning period
20.6.3 Simplified index method
Chapter 2 1 Analysis of Factors Affecting Exchange Rate
2 1. 1 Brief introduction of exchange rate influencing factors
2 1.2 data description
2 1.3 Analysis Method Overview
Exploratory analysis of 2 1.3. 1
2 1.3.2 multiple regression analysis
2 1.4SPSS modeling process and conclusion analysis
2 1.4. 1 data preparation
2 1.4.2 exploratory analysis
2 1.4.3 multiple regression analysis
Further analysis and application of 2 1.5
2 1.5. 1 Excluding * * * linear foreign exchange reserve variables.
Further improvement of 2 1.5.2 regression model
2 1.5.3 Comparison of Two Regression Models
2 1.6 suggestion and popularization
2 1.6. 1 time series research
2 1.6.2 qualitative analysis of influencing factors of exchange rate
Chapter 22 Application of Factor Analysis in Comprehensive Performance Evaluation
22. 1 Brief Introduction to Comprehensive Evaluation of Students' Achievements
22.2 data description
22.3 Overview of analytical methods
22.3. 1 Steps of applying factor analysis to comprehensively evaluate scores
22.3.2 Matters needing attention in applying factor score method to comprehensive performance evaluation
22.4SPSS modeling process and conclusion analysis
22.4. 1 data preparation
22. 4. 2 PSS factor analysis modeling and analysis
22.5 Further analysis and application
22.6 Suggestions and promotion
22.6. 1 Comprehensive evaluation of senior high school students' performance
Treatment of missing data
22.6.3 Comprehensive evaluation model combining multiple methods
Chapter 23 Cluster Analysis of Higher Education Conditions
23. 1 data description
23. 1. 1 Judging whether the basic conditions for running a school are qualified or not
23. 1.2 index selection
23. 1.3 data format
23.2 Introduction to Cluster Analysis
23.3SPSS modeling process and conclusion analysis
23.3. 1 university cluster setting operation
23.3.2 Analysis of Undergraduate Colleges and Universities
23.4 Suggestions and promotion
Chapter 24 Testing and Analysis of Test Paper Reliability
24. 1 Brief introduction to the background of test paper reliability test
24. 1. 1 aspects of the test content itself
24. 1.2 measurement process
24. 1.3 examinee's own factors
24.2 data description
24.3 Overview of analytical methods
24.3. 1 Basic calculation formula of test paper reliability
24.3.2 Estimation method of test paper reliability
24.4SPSS modeling process and conclusion analysis
24.4. Parameter setting of1SPSS reliability analysis
24.4.2 Analysis of results
24.5 Suggestions and promotion
Chapter 25 Design and Analysis of Multi-factor Test
25. 1 Introduction to experimental design
25. 1. 1 Application of experimental design
25. 1.2 Steps to solve problems in experimental design
25.2 data description
25.3 Overview of analytical methods
25.3. 1 orthogonal design method
25.3.2 Comprehensive scoring method
25.4SPSS modeling process and conclusion analysis
25.4. 1 data standardization
25.4.2 Determination of Weight of Performance Indicators
25.4.3 Using weights to find comprehensive indicators
25.4.4 Further analysis of comprehensive score
25.5 Suggestions and promotion
……